From Training to Production: How to Fit in Your Machine Learning Model Lifecycle?

1 min
Parth Tiwary
21st April, 2022

In this webinar, Parth Tiwary (’s Product team) and Kamil Kaczmarek (’s DevRel team) share what they’ve learned when talking to hundreds of teams looking for a solution to organize the model development lifecycle and track metadata from each stage of the process.

The agenda:

  • A high-level overview of MLOps landscape
  • What is the ML model lifecycle?
  • Major challenges/complexities in ML model lifecycle
  • How you can use for:
    • Experiment tracking
    • Model fine-tuning
    • Logging metadata from monitoring and production environment
    • Setting up automatic retaining of models using monitoring metadata
  • Tips and tricks on using in your MLOps lifecycle
  • Q&A session
  • 00:01


  • 05:24

    Major challenges/complexities in ML model lifecycle

  • 11:47

    Product demo

  • 25:22

    Q&A session

Other useful resources

If you want to try Neptune out, check the documentation.

If you want to learn more about the product first, head over to the homepage.

You can also read case studies showing how others incorporated Neptune into their workflows.

Couldn’t find the use case you were looking for?

Just get in touch, and our ML team will create a custom demo for you.