If you want to scale your model development, you need Neptune.
MLflow is great for Data Scientists and ML Engineers looking for a basic ML lifecycle platform. But it doesn’t give you the functionality or collaborative features you need as your team and projects grow in size. Neptune does.
- Functionality:
- experiment tracking
- model registry
- model packaging
- pipelines
- Open-source
- Community support
- Functionality:
- experiment tracking
- training monitoring
- debugging
- SaaS or deployed on your infra
- Advanced UI
- User access management
- Collaboration features
- Dedicated user support
- Security and compliance (SOC 2)
Choose Neptune when bare-bones metadata management is holding you back
SaaS = Zero maintenance
It’s frustrating to spend your days dealing with storage & backups, managing user access, and setting up autoscaling for your servers. Not to mention the need to create new instances for every project.
Neptune’s SaaS solution lets you work on multiple projects & handles your backend automatically. So you can focus on managing your model development.
Created for collaboration
The limitations of open-source software for access management and experiment sharing start to bite as soon as your team expands.
Packed with collaborative features — like reports, customizable workspaces and persistent shareable links — Neptune takes team management off your to-do list.
Debug your models faster with a flexible User Interface
Neptune allows you to compare all of your metadata in a clean, easy-to-navigate, and responsive User Interface. With searchable side-by-side run tables, parallel coordinates plots, and learning curve charts, Neptune makes it easy to analyze experiments.
Will scale. Won’t fail.
Neptune won’t freeze up faced with large streams of logs running 1000s of experiments at once. And even when rendering complex charts to view your data Neptune will never slow you down.
Take a deep dive into
what makes Neptune different
Neptune
MLflow
Commercial offering
Managed cloud service
Open-source
User based and usage based (ingestion data points)
Free
General information
Yes
No. However, it’s available on a managed server as part of the Databricks platform.
Yes
Yes
Minimal setup—install the Python client and ensure internet access (for managed hosting). Self-hosting requires additional infrastructure; see requirements here.
A few lines of code via the Neptune Python library.
A few lines of code via Python, REST, R, Java, or CLI.
CLI/custom API and Python SDK
CLI/custom API, REST API, Python SDK, R SDK, Java SDK
Search, Update, Delete, Download
Search, Update (limited), Delete, Download
Offline, Disabled/Off, Asynchronous
Offline, Disabled/off, Asynchronous, Synchronous
Yes
Yes
No
No
Capabilities
Images, Plots, Video, Audio
Plots
No
Limited
Console logs, Execution command
Execution command
No
pip requirements.txt, conda env.yml, Docker Dockerfile
No
No
No
No
No
No
Report outdated information here.
Make it simple to scale your model development
Neptune is the lightweight solution for ML teams growing frustrated with MLflow’s limited functionality.