MLOps Blog

The Best Tools to Visualize Metrics and Hyperparameters of Machine Learning Experiments

3 min
24th October, 2023

Evaluating your model on the key metrics is a crucial first step in understanding your model quality. Keeping track of hyperparameters and corresponding evaluation metrics is important because small changes in hyperparameters can sometimes have a big impact on model quality.

And so, understanding which hyperparameters have an impact and which do not affect evaluation metrics can lead to valuable insights. This is why you should use machine learning visualization to showcase what impact those parameters have on your metrics and know what is your model performance across all of your ML experiments.

To help you, I’ve gathered a list of recommended tools that will do the tedious work for you.

Here are the best six tools to visualize metrics and hyperparameters of machine learning experiments.

1. Neptune

Feel in control

Neptune is a metadata store for MLOps built for research and production teams that run a lot of experiments.

You can use Neptune to track all metadata generated from your runs (i.e. Hyperparameters, loss, metrics and etc), then visualize and compare results. Automatically transform tracked data into a knowledge repository, then share and discuss your work with colleagues.

Neptune – summary:

  • Easily keep track of metrics, hyperparameters
  • Visualize losses and metrics as your model is training (monitor learning curves)
  • Compare learning curves across various models/experiments
  • Use an interactive comparison table that automatically shows diffs between experiments
  • Fetch experiment data and visualize parameters and metrics in notebooks.
  • It has other visualization features that are not parameter-metric related

See also

The Best Tools for Machine Learning Model Visualization

2. WandB

Weights & Biases a.k.a. WandB is focused on deep learning. Users can track experiments to the application with Python library, and – as a team – can see each other’s experiments.

The tool lets you record and visualize every detail of your research and collaborate easily with teammates. You can easily log metrics from your script to visualize results in real-time as your model trains. You can also see what your model is producing at each time step.

WandB – summary:

  • Monitor training runs information like loss, accuracy (learning curves)
  • Compare runs with a dashboard table showing auto-diffs
  • Visualize parameters and metrics via parallel coordinates plot
  • Explore how parameters affect metrics with feature (parameter) importance visualization (this I think is experimental)
  • It has other visualization features that are not parameter-metric related

3. Comet

Comet app

Comet is a meta machine learning platform for tracking, comparing, explaining, and optimizing experiments and models. It allows you to view and compare all of your experiments in one place. It works wherever you run your code with any machine learning library, and for any machine learning task.

Comet is suitable for teams, individuals, academics, organizations, and anyone who wants to easily visualize experiments and facilitate work and run experiments.

Comet – summary:

  • You can customize and combine your visualizations
  • You can monitor your learning curves
  • Comet’s flexible experiments and visualization suite allow you to record, compare and visualize many artifact types
  • It has other visualization features that are not parameter-metric related

4. TensorBoard

TensorBoard is a visualization toolkit for TensorFlow that lets you analyze model training runs. It’s open-source and offers a suite of tools for visualization and debugging of machine learning models.

What’s more, it has an extensive network of engineers using this software and sharing their experience and ideas. This makes a powerful community ready to solve any problem. The software, itself, however, is best suited for an individual user.

TensorBoard – summary:

  • Tracking and visualizing metrics such as loss and accuracy
  • Comparing learning curves of various runs
  • Parallel coordinates plot to visualize parameter-metric interactions
  • It has other visualization features that are not parameter-metric related

You also may like

The Best TensorBoard Alternatives (2020 Update)

5. Optuna

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning.

Additionally, Optuna Integrates with libraries such as LightGBM, Keras, TensorFlow, FastAI, PyTorch Ignite, and more.

Optuna – summary:

  • Visualizations in Optuna let you zoom in on the hyperparameter interactions and help you decide on how to run your next parameter sweep
  • plot_contour: plots parameter interactions on an interactive chart. You can choose which hyperparameters you would like to explore
  • plot_optimization_history: shows the scores from all trials as well as the best score so far at each point
  • plot_parallel_coordinate: interactively visualizes the hyperparameters and scores
  • plot_slice: shows the evolution of the search. You can see where in the hyperparameter space your search went and which parts of the space were explored more

Read more

Neptune’s integration with Optuna

6. HiPlot

Hiplot is a straightforward interactive visualization tool to help AI researchers discover correlations and patterns in high-dimensional data. It uses parallel plots and other graphical ways to represent information more clearly.

HiPlot can be run quickly from a Jupyter notebook with no setup required. The tool enables machine learning (ML) researchers to more easily evaluate the influence of their hyperparameters, such as learning rate, regularizations, and architecture. It can also be used by researchers in other fields, so they can observe and analyze correlations in data relevant to their work.

HiPlot – summary:

Creates an interactive parallel plot visualization to easily explore various hyperparameter-metric interactions
Based on selection on the parallel plot the experiment table is updated automatically
It’s super lightweight and can be used inside notebooks or as a standalone web server

Final words

Now that you have all the list of the best tools, you can visualize metrics and hyperparameters of your ML experiment. Test them yourself and see which one works best for you. We, of course, recommend Neptune – the most lightweight of them all 😉

And which tool is your favorite?

Was the article useful?

Thank you for your feedback!