MLOps Blog

We Raised $8M Series A to Continue Building Experiment Tracking and Model Registry That “Just Works”

2 min
5th September, 2023
Series A announcement

When I came to the machine learning space from software engineering in 2016, I was surprised by the messy experimentation practices, lack of control over model building, and a missing ecosystem of tools to help people deliver models confidently.  

It was a stark contrast from the software development ecosystem, where you have mature tools for DevOps, observability, or orchestration to execute efficiently in production.

Seeing that led me to start with a few friends back in 2017 to give ML practitioners the same level of confidence when developing and deploying models as software devs have when shipping apps.  

A lot has changed since then:

  • the transformers and GPT-3 were created, 
  • Pytorch became a standard, 
  • Theano was deprecated and then came back again, 
  • the term “MLOps” was coined and then became popular.  

Most importantly, the ML community realized that building a POC model in a notebook is not the end goal. 

Today, companies, big and small, deploy and operate those models in production.
By no means are we at a “develop and deploy models confidently” stage just yet, but we’ve made huge progress as a community. 

Speaking of progress, I am really happy to share that we’ve just raised an $8M Series A to continue building

Almaz Capital led the round with participation from our existing investors: btov Partners, Rheingau Founders, and TDJ Pitango.

We’ve gone such a long way over these last few years. Today we have:

  • tens of thousands of users, 
  • hundreds of paying teams, 
  • places like CB Insights list us as a “Top 100 AI startup in 2021”. 

As a Polish engineer at heart, there is only one way to express how I feel: not bad. 

I am very grateful to:

  • all the users and customers for invaluable feedback and support, 
  • the team for putting in their best effort every day, 
  • investors for believing in our vision. 

While most companies in the MLOps space try to go wider and become platforms that solve all the problems of machine learning teams, we want to go deeper and become the best-in-class tool for experiment tracking and model registry. 

We want to solve “just” this one part of the MLOps stack really well. 

Why just one?

In a more mature software development space, there are almost no end-to-end platforms. So why should machine learning, which is even more complex, be any different? 

I believe that by focusing on providing a great developer experience for experiment tracking and model registry, we can become one of the pillars on which teams build their MLOps tool stacks.

And to make this happen, we will invest a big chunk of that $8M in developer experience. Expect:

  • more features built for specific ML use cases, 
  • even more responsive UI & APIs, 
  • revamped UX of our web UI, 
  • more integrations with the tools from the MLOps ecosystem,
  • new ways of interacting via webhooks and notifications, 
  • better documentation,
  • quicker feedback to feature loops.   

But first and foremost, we’ll continue making experiment tracking and model registry “just work” for ML teams around the world. 

If you’re interested in joining us, checking out the tool, or sharing feedback, I’d love to hear from you:

  • Jobs: we are hiring for engineering, devrel, and growth roles 
  • Docs:  if you haven’t yet, try Neptune out 
  • Request a demo: we’ll create a custom demo for your use case 
  • Share feedback: just tell us what you think

Note: The article was published on 12th April, 2022.

Was the article useful?

Thank you for your feedback!